# Mechanical energy harvesting with piezoelectric nanostructures: Great expectations for autonomous systems



<u>Gustavo Ardila,</u> Ronan Hinchet, Laurent Montès and Mireille Mouis IMEP-LAHC UMR 5131 (Grenoble INP, UJF, UdS, CNRS), MINATEC 3 parvis Louis Néel, Grenoble, France Mail: ardilarg@minatec.inpg.fr





### Main Applications:

- · Autonomous sensors
- · Human health, structure health monitoring (buildings, planes...)
- < 200Hz (human, cars)</li>
- 1kHz (some machines)

# Challenges:

- Reduction of size
- · Increase the power (energy) density harvested
- IC compatible

## MECHANICAL ENERGY HARVESTING WITH MEMS



Aluminiu electrode seismic

0.15V, 20µW/cm3, 1.6KHz, Sputtered AIN

> M. Marzencki et al 5&A 145-146 2007

## Typical devices:

- Resonant cantilever devices at low frequency (< 200Hz)</li>
- Thin film piezomaterials (AIN, PZT) or commercial ceramics
- Power densities: 0.1-43mW/cm³

# PIEZO AT NANO

#### Main Advantages :

- Integrating multiple nanostructures into non resonant harvester devices is possible
- Sensible devices (low mechanical input is sufficient to generate a voltage)
- · Less material is used, eventually reducing the overall cost of the device



#### **Advantages**

·NWs with high aspect ratio can be easily fabricated Inconvenients

· Integration of large numbers of NWs is difficult

**Advantages** 

- · Compatible with Si technology
- can be doped(n, p), heterostructured
- Piezo properties can be improved

## WHAT ABOUT THE FUTURE?

Actual piezoelectric coefficients (d<sub>33</sub>) at the nanoscale compared to bulk (from the literature)

| Material | <b>d</b> <sub>33</sub> [pm/V] |                          |                        |
|----------|-------------------------------|--------------------------|------------------------|
|          | Theoretical<br>(nanoscale)    | Experimental (nanoscale) | Experimental<br>(bulk) |
| PVDF     | N/A                           | -38                      | -25                    |
| PZT      | N/A                           | 101                      | 650                    |
| ZnO      | 168.2                         | 14-26.7                  | 9.93                   |
| GaN      | 65.8                          | 12.8                     | 1.86                   |

Development of new characterization techniques at the nanoscale



Further improvements using heterostructured NWs



X. Xu et al., Nanotechnology 22 2011 Piezoelectric coefficient improved up to 9x using GaN/AIN heterostructured NW

# CONCLUSION

- · Nanowires present enhanced properties: high piezoelectricity and reduced stiffness
- Integrated NWs are a promising solution to harvest energy at any frequency or random mechanical input ·Harvested power densities using piezo nanostructures are becoming comparable to MEMS piezo harvesters
  - · Using heterostructured NWs can further increase the harvested energy density