

Printed electronics for radio-frequency: an overview

IMEP-LaHC Webinar, RFM team 05/27/2020

DELFAUT Camille WAWRZYNIAK Maxime

IMEP-LAHC Context

Radio-Frequencies devices Dup to 22 billions of connected object & 1 trillion sensors in 2025

Source: Keysight Technologies

Communications

IoT

Smart building

Smart security

Printed radio-frequencies devices is an answer for innovative applications

Interest for printing electronics

From Sci-Finder. Keywords: electronic, printing.

IdTechEx. Printed, Organic and Flexible Electronics 2020-2030:
Forecast, Technologies, Markets; 2020

Growing interest for printed electronics

Parallel evolution from innovative and flexible applications

Market forecast: more than \$74 bn in 2030!

MEP-LAHC Printed electronics: definition

Printed

→ Refers to printing processes

- Invented by Gutenberg in 1454
- Evolution of process
- Well-known today

Electronics

- Start with transistor in 1947
- Moore's Law & More than Moore
- Design limited on solid substrate

	Conventional Electronics	Printed Electronics
Matariala	Ciliaan Caramia Class	Organic semiconductors, Polymers,
Materials	Silicon, Ceramic, Glass	Specialty inks
No surfactuais a tack sissue	Photolithography, Micromachining, Ablation	Printing processes on plastic, textile,
Manufacturing technique		paper, foil
Product Feature	Rigid, Brittle, Miniaturized	Flexible, Robust, Large Area

Printing methods to create electrical devices on various substrates using functional inks

Materials & Process in Printed RF devices

Printed Radio-frequency devices: storyboard at IMEP-LaHC

Conclusions & Perspectives

Materials & Process in Printed RF devices

Printed Radio-frequency devices: storyboard at IMEP-LaHC

Conclusions & Perspectives

MEP-LAHC Printing processes

Various printing process for differents applications: only screen-printing & jetting presented

MEP-LAHC Screen-printing

(a): Deposition of ink on screen-frame

(b): Printing of the design

(c): End of printing & preparation for a new print

Used screen-frame:

- $\mathcal{O}_{\text{Thread}} = 34 \, \mu \text{m}$
- 120 thread.cm
- Snap-off : 1mm

- Layer thickness ∈ [2-100] μm
- Layer width ≥ 50 μm

Printing techniques with industrial interest & high fidelity

MEP-LAHC Jetting process

V_{print} is the linear or angular movement of the printing device

5/27/2020

9

Jetting process: in MINT chaire

1st set up:

2D and 3D (not all shapes)

Robot Janome 4 axes

Vermes jetting device

2D and 3D

+

Robot Staubli 6 axes

Allow to print easily on 3D shape

Jetting process: in MINT chaire

High viscous silver ink (2.87 $\pm 0.14 \times 10^6$ S/m) required for jetting device

No overlapping

Thickness (µm)	Width (µm)
25 ±1	689 ±23

Overlapping of 2 lines

Thickness (µm)	Width (μm)
42 ±6	973 ±16

Advantages

- 2D and 3D substrate
- No chemical treatment
- Short process
- Fast commissioning

Challenges

- Roughness substrate
- Environment dependency on the ink behaviour (particularly temperature)

IMEP-LAHC Functional inks

≠ inks:

- Semiconductor

- Dielectric

- Conductive

≠ conductive inks:

Conductive polymers

PEDOT:PSS

Silver particles

Flakes

Nanowires Nanoparticles

Material	Sheet resistance (Ω.sq ⁻¹)	
PEDOT:PSS	190-900	
Carbon particles	30-10000	
Silver particles	<0.03	

 $\sigma = f(conductive\ material)$ Silver particles selected
Require post-treatment

Ink post-treatment

Several ink post-treatment:

Sintering $^{(1), (2)}$: coalescence of particules into a solid by thermal energy (T > 300°C)

Annealing⁽¹⁾: same as sintering but at lower temperature (~90°C). Particules are in contact

Curing⁽¹⁾: chemical modifications by polymerisation of the ink (UV curing is mainly used)

Ink post-treatment

Nanoparticles (NP) coalescence depending on the temperature (from annealing to sintering):

Silver NP

Resistivity: 7.14 $\mu\Omega$ cm

Silver NP at 450°C Resistivity: $4.11 \mu\Omega$ cm

For both our thesis, annealing used because of low substrates glass temperature

MEP-LAHC Annealing processes

Thermal curing

- + Easy to implement
- + Cheap equipment
- + Conductivity
- High temperature for substrate
- Time ≈ 30 min

Ohmic curing (4)

- + Time ≈ 1 min
- + Easy to implement
- + Cheap equipment
- High temperature localized
- Only on line shape

Infrared curing 💆

- + Time ≈ 5 min
- + Conductivity

- High temperature localized
- Expensive equipment

Photonic curing

- + Time ≈ 5 min
- + Conductivity

- High temperature localized
- Very expensive equipment

For both our thesis, thermal annealing privilegied

IMEP-LAHC Antennas

IEEE Standards: Interface between both guided and free-space media ⇔ interface between an electrical power and an electromagnetic signal

Printed radio-frequency devices

From IEEE Xplore. Keywords: Antenna, printing

- Interest started in 2010
- More than 150 paper in 2019
- Still a niche in RF field
- Differents printed RF devices

Antennas

Frequency Selective Surface (FSS)

Sensors

J. J. Adams et al. Adv. Mater. 2011, 23, 1335

Huang et al., Sci Rep 6, 38197 (2016)

P. Dzik *et al.*, ACS Appl. Mater. Interfaces, 2015,7,16177–16190

Transmission lines

J. M. Lopez-Villegas IMS 2019

Materials & Process in Printed RF devices

Printed Radio-frequency devices: storyboard at IMEP-LaHC

Conclusions & Perspectives

Conception of printed device for energy harvesting

- Printed antennas for energy harvesting on paper board by flexography
- Printed antenna on polyester flexible by screen printing

Double monopole 2.45 GHz and 4.9 GHz

Rectenna monopole 2.45 GHz

- Study of the folded impact on RF properties
- Study of the substrate curvature impact on RF properties

Printed devices for filtering electromagnetic waves

- Printed Frequency Selective Surfaces for filtering by screen-printing
- Printed Frequency Selective Surfaces for transmission improvement by screen-printing

¬ of transmission 3 GHz

Tri-band Wifi rejected 0.97GHz, 2.25GHz and 3.14 GHz

- New setup fabricated for anechoic chamber
- Study of printed patterns for FSS

Printed flexible antenna for energy harvesting

- Printed & Foldable dipole & coplanar antennas for energy harvesting
- Printed on Polymeric substrate (PET) by screen-printing

Coplanar antennas, without and with folding

Rectifier foldable antenna

- Diversity of printed rectenna printed on PET substrable
- Median harvested power [13-121]nW

Design of 2D and 3D antennas on flexible substrate

- Printed & Foldable antenna for packaging & home-networking devices
- Printed on paper substrate by screen-printing

- RF characterization of ≠ paper substrates
- Influence of bending effects on RF properties dependent of :
 - Bending location
 - Bending angle

Wideband antenna with connector

Binded wideband antenna

Energy harvesting and wireless power transmission

- 3D energy harvesting structure
- Folded antenna for miniaturisation on paper by screen-printing

Wi-Fi antennas at 2.45 GHz with air gap

- Comparison antenna printed/antenna copper
- 3D structure for maximisation of energy harvesting

24

Left: before assembly Center: copper tape assembly Right: silver ink assembly

MINT Project:

3D printed electronic for Molded Interconnected Devices (MID) dedicated to internet of Things applications

E-Transparent (E-T.) Project:

Development of innovative and transparent Radio-Frequency devices based on nanocelluloses-silver nanowires hybrid system

MEP-LAHC Projet MINT

How can we integrate easily RF devices on 2D or 3D plastic part?

Process characterisation

Innovative printed devices

Properties and limitations:

- Geometric
- Electric
- Electromagnetic

- Antenna
- FSS

Energy harvesting

Innovative printed devices reliable and robust

MEP-LAHC Projet MINT

How can we integrate easily RF devices on 2D or 3D plastic part?

Process characterisation

Properties and limitations:

- Geometric
- Electric
- Electromagnetic

Innovative printed devices

In this presentation

- Antenna

 LoRa antenna
- FSS

Energy harvesting

Innovative printed devices reliable and robust

MEP-LAHC Projet MINT: application

LoRa and GPS antenna Resonant frequencies:

- 0.868 GHz LoRa
- 1.575 GHz GPS

WiFi antenna

Miniaturisation

LoRa antenna Improvement Deporting LoRa antenna on plastic case

Cost reductions

WiFi antenna improvement

MEP-LAHC Projet MINT: application

	Traditional antenna	Printed antenna on PCB	Printed antenna on plastic
Substrate	FR4	FR4	PC
Conductive track	Copper	Microsilver ink	Microsilver ink

MEP-LAHC Projet MINT: application

		Traditional antenna	Printed antenna on PCB	Printed antenna on plastic
	Substrate	FR4	FR4	PC
	Conductive track	Copper	Microsilver ink	Microsilver ink

IULY | 2019

Validation of jetting process to move antenna on the case without loss of adaptation

IMEP-LAHC Projet MINT

How can we integrate easily RF devices on 2D or 3D plastic part?

Process characterisation

Innovative printed devices

Properties and limitations:

- Geometric
- Electric

Electromagnetic

- Antenna 🧹
- FSS

In progress

Energy harvesting

Innovative printed devices reliable and robust

IMEP-LAHC E-T. Project: Introduction

Formulation of **Transparent & Conductive ink**

32

Transparent Radio-Frequencies Devices

MEP-LAHC E-T. Project: RF approach

Goal: Develop transparent printing antennas by meshing without affecting properties

- → Removing metalic part to let light pass through
- →Introduced in 1991 by Ito and Wu⁽¹⁾

In this project, 2 models of antenna

CPW Antenna @ 3.6 GHz

Dipole antenna @ 2.45 GHz

(1) Ito and Wu, ICAP 91 (IEE) 133-136, 1991

MEP-LAHC E-T. Project: Meshed results

Reference Antenna , no meshed

Reference printed antenna & miniaturized model

Square and Honeycomb → Good results vs simulations
Diamond & Circle → Experimental <<<< Simulations
High transparency (%T > 78%) and conservation of RF properties

IMEP-LAHE E-T. Project: Introduction

Transparent Radio-Frequencies Devices

Transparent inks: a review

<u>Goal</u>: Development of transparent and conductive ($<2 \Omega.sq^{-1}$) ink for RF applications by screen-printing

Haacke's law

$$FoM = \frac{T^{10}}{R_S}$$

Few references for the development of conductive & transparent ink for screen-printing

MEP-LAHC E-T. Project: Raw materials

Conductive material

Silver Nanowires (AgNW) 1%wt in isopropanol Ratio $L/\Phi \approx 660$

High conductivity
Transparency & conductivity

Nanocellulose

Cellulose NanoFibrils (CNF)
TEMPO-oxidizated → CNFt

4 roles :

Transparent matrix Adapted Rheological Adhesion Promoter Dispersing Agent

CNFt-AgNW film

Hoeng et al., J. Mater. Chem. C 2016, 4 (46), 10945-10954.

Additive material (S.NP)

Ø:500 nm

Spherical particle

2 Presumed roles:

→ Dispersion of AgNW ⇔ VdW interactions

☑ Percolation threshold

MEP-LAHC E-T. Project: Improvement of σ

Optimum system based on CNF,/AgNW

Addition of S.NP (additive material)

FEG-SEM

AFM Tapping mode

%T @550 nm

 81 ± 6

 $R_{\rm s}$ (Ω .sq⁻¹)

 48 ± 10

 73 ± 1

 8 ± 1

HYP: Improvement of conductivity due to organization inside AgNW Network

- ≥ R_s for a same ratio of conductive material - Low Impact on %T (-8%)

MEP-LAHC E-T. Projet: Transparent ink

Formulation with 5%wt of solid content, described as

- 87% of HPMC

- 13% AgNW/CNF₊/S.NP

Influence of [S.NP] on σ investigated

→ Design of Experiments (DoE)

Formula (2) is the best trade-off between transparency and conductivity

MEP-LAHC E-T. Project: Transparent antennas

Measured gain: 0.02 dBi

Simulated gain: 0.29 dBi

Proof of concept validated

Measured gain in agreement with simulation

E-T. Project : Conclusions

Haacke's law

$$FoM = \frac{T^{10}}{R_S}$$

- Investigation on the type of bound between S.NP & AgNW to continue
 - → New formulation with other oxydes & diameter to understand this phenomena
- Influence of the [S.NP] with new grade of binding agent offer new horizons of formulations

Materials & Process in Printed RF devices

Printed Radio-frequency devices: storyboard at IMEP-LaHC

Conclusions & Perspectives

IMEP-LAHC Conclusions

- Printed electronics is an innovative solution for flexible applications
- Various processes depending for various outputs parameters
- Conductive inks properties as a function of raw material
- Silver inks privilegied
- Post-treatment mandatory to improve σ
- Process applied to RF devices with ¬ interest
- Long story of printing RF research at IMEP-LaHC with 2 current PhD :
 - MINT Project: 3D solutions for RF

MEP-LAHC Perspectives

- Innovative ways for IoT, smart packaging & smart building applications
- Improvement of 3D printing processes
- Enhancement of trade-off transparency/conductivity
- Printing processes can also be available for other teams at IMEP-LaHC:

Inkjet Transistors

Grubb et al., Sci Rep 7, 1-8 (2017).

Optoelectronic sensors

Khan, Y. et al. IEEE Access 7, 128114-128124 (2019).

Thank you for attention