Soutenance de thèse de Krishna PRADEEP

Caractérisation et modélisation de la variabilité au niveau du dispositif dans les MOSFET FD-SOI avancés
Lundi 8 Avril 2019 à 10h30
 
Résumé:
Selon l’esprit de la “loi de Moore” utilisant des techniques innovantes telles que l’intégration 3D et de nouvelles architectures d’appareils, le marché a également évolué pour commencer à imposer des exigences spécifiques aux composants, comme des appareils à faible consommation et à faible fuite, requis par l’Internet des objets (IoT) applications et périphériques hautes performances demandés par les applications 5-G et les centres de données. Ainsi, le secteur des semi-conducteurs s’est peu à peu laissé guider par les avancées technologiques, mais aussi par les applications. La réduction de la tension d’alimentation est encore plus importante pour les applications à faible puissance, comme dans l’IoT, cela est limité par la variabilité du périphérique. L’abaissement de la tension d’alimentation implique une marge réduite pour que les concepteurs gèrent la variabilité du dispositif. Cela nécessite un accès à des outils améliorés permettant aux concepteurs de prévoir la variabilité des périphériques et d’évaluer son effet sur les performances des leur conception, ainsi que des innovations technologiques permettant de réduire la variabilité des périphériques. Cette thèse se concentre dans la première partie et examine comment la variabilité du dispositif peut être modélisée avec précision et comment sa prévision peut être incluse dans les modèles compacts utilisés par les concepteurs dans leurs simulations SPICE. La thèse analyse d’abord la variabilité du dispositif dans les transistors FDSOI avancés à l’aide de mesures directes. À l’échelle spatiale, en fonction de la distance entre les deux dispositifs
considérés, la variabilité peut être classée en unités de fabrication intra-matrice, inter-matrice, inter-tranche, inter-lot ou même entre différentes usines de fabrication. Par souci de simplicité, toute la variabilité d’une même matrice peut être regroupée en tant que variabilité locale, tandis que d’autres en tant que variabilité globale. Enfin, entre deux dispositifs
arbitraires, il y aura des contributions de la variabilité locale et globale, auquel cas il est plus facile de l’appeler la variabilité totale. Des stratégies de mesure dédiées sont développées à l’aide de structures de test spécialisées pour évaluer directement la variabilité à différentes échelles spatiales à l’aide de caractérisations C-V et I-V. L’effet de la
variabilité est d’abord analysé sur des facteurs de qualité (FOM) sélectionnés et des paramètres de procédés extraits des courbes C-V et I-V, pour lesquels des méthodologies d’extraction de paramètres sont développées ou des méthodes existantes améliorées.
Cette analyse aide à identifier la distribution des paramétres et les corrélations possibles présentes entre les paramètres. Ensuite, nous analysons la variabilité dépendante de la polarisation dans les courbes I-V et C-V. Pour cela, une métrique universelle, qui fonctionne quelle que soit l’échelle spatiale de la variabilité, est definée
sur la base de l’analyse des appariement précédemment rapportée pour la variabilité locale. Cette thèse étend également cette approche à la variabilité globale et totale. L’analyse de l’ensemble des courbes permet de ne pas manquer certaines informations critiques dans une plage de polarisation particulière, qui n’apparaissaient pas dans les FOM sélectionnés. Une approche de modélisation satistique est utilisée pour modéliser la variabilité observée et identifierles sources de variations, en termes de sensibilité à chaque source de variabilité, en utilisant un modèle physique compact comme Leti-UTSOI. Le modèle compact est d’abord étalonné sur les courbes C-V et I-V dans différentes conditions de polarisation et géométries. L’analyse des FOM et de leurs corrélations a permis d’identifier les dépendances manquantes dans le modèle compact. Celles-ci ont également été incluses en apportant de petites modifications au modèle compact.
 
Membres du jury :
  • Gérard GHIBAUDO - Directeur de thèse
  • Jean-Michel SALLESE - Rapporteur
  • Jean-Michel PORTAL - Rapporteur
  • Mireille MOUIS - Examinateur


Partenaires

Thèse préparée dans le laboratoire : UMR 5130 - Institut de Microélectronique, Electromagnétisme et Photonique -Laboratoire d'hyperfréquences et de caractérisation , sous la direction de Gérard GHIBAUDO, directeur de thèse et Patrick SCHEER Co-encadrant.
Infos date
Soutenance de thèse de Krishna PRADEEP, pour une thèse de DOCTORAT de l' Université de Grenoble Alpes , spécialité "NANO ELECTRONIQUE et NANO TECHNOLOGIES ", intitulée:
Infos lieu
Amphi M001- Phelma /MINATEC
3 rue parvis Louis Néel
38016 Grenoble cedex1